Evidence for de novo synthesis of lysophosphatidic acid in the spinal cord through phospholipase A2 and autotaxin in nerve injury-induced neuropathic pain.
نویسندگان
چکیده
We previously reported that lysophosphatidic acid (LPA) initiates nerve injury-induced neuropathic pain and its underlying mechanisms. In addition, we recently demonstrated that intrathecal injection of LPA induces de novo LPA production through the action of autotaxin (ATX), which converts lysophosphatidylcholine to LPA. Here, we examined nerve injury-induced de novo LPA production by using a highly sensitive biological titration assay with B103 cells expressing LPA1 receptors. Nerve injury caused high levels of LPA production in the ipsilateral sides of the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve, or sciatic nerve. Nerve injury-induced LPA production reached its maximum at 3 h after injury, followed by a rapid decline by 6 h. The LPA production was significantly attenuated in ATX heterozygous mutant mice, whereas the concentration and activity of ATX in cerebrospinal fluid were not affected by nerve injury. On the other hand, the activities of cytosolic phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2) were enhanced, with peaks at 1 h after injury. Both de novo LPA production and neuropathic pain-like behaviors were substantially abolished by intrathecal injection of arachidonyl trifluoromethyl ketone, a mixed inhibitor of cPLA2 and iPLA2, or bromoenol lactone, an iPLA2 inhibitor, at 1 h after injury. However, administration of these inhibitors at 6 h after injury had no significant effect on neuropathic pain. These findings provide evidence that PLA2- and ATX-mediated de novo LPA production in the early phase is involved in nerve injury-induced neuropathic pain.
منابع مشابه
Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice
BACKGROUND Paclitaxel, which is widely used for the treatment of solid tumors, causes neuropathic pain via poorly understood mechanisms. Previously, we have demonstrated that lysophosphatidic acid (LPA) and its receptors (LPA1 and LPA3) are required for the initiation of peripheral nerve injury-induced neuropathic pain. The present study aimed to clarify whether LPA and its receptors could medi...
متن کاملLysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain
BACKGROUND We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX). RESULTS We examined in vivo LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA1 receptors. Intrathecal administration...
متن کاملAn LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model
BACKGROUND We previously reported that nerve injury-induced neuropathic pain is initiated by newly produced lysophosphatidic acid (LPA). RESULTS In this study, we developed a quantitative mass spectrometry for detecting LPA species by using Phos-tag. Following nerve injury, the levels of 18:1, 16:0 and 18:0 LPA in the spinal dorsal horn significantly increased at 3 h and declined at 6 h. Amon...
متن کاملAnalgesic effect of α-terpineol on neuropathic pain induced by chronic constriction injury in rat sciatic nerve: Involvement of spinal microglial cells and inflammatory cytokines
Objective(s): Neuropathic pain is a prevalent and debilitating neurological disorder. Ample evidence indicates that microglial cells and inflammatory cytokines are involved in the pathogenesis of neuropathic pain. Alpha-terpineol is a monoterpenoid alcohol with inhibitory effect on inflammatory cytokines. The main purpose of this study was to evaluate the effect of α-t...
متن کاملLysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid.
Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain and several pathological events in a partial sciatic nerve injury model. Recently, we reported that lysophosphatidic acid (LPA) induces neuropathic pain as well as demyelination and pain-related protein expression changes via LPA(1) receptor signaling. Lysophosphatidylcholine (LPC), also known as lysolecithin, which is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 333 2 شماره
صفحات -
تاریخ انتشار 2010